coffe roasting

 












import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from lab_utils_common import dlc
from lab_coffee_utils import load_coffee_data, plt_roast, plt_prob, plt_layer, plt_network, plt_output_unit
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)
X,Y = load_coffee_data();
print(X.shape, Y.shape)
plt_roast(X,Y)
print(f"Temperature Max, Min pre normalization: {np.max(X[:,0]):0.2f}, {np.min(X[:,0]):0.2f}")
print(f"Duration    Max, Min pre normalization: {np.max(X[:,1]):0.2f}, {np.min(X[:,1]):0.2f}")
norm_l = tf.keras.layers.Normalization(axis=-1)
norm_l.adapt(X)  # learns mean, variance
Xn = norm_l(X)
print(f"Temperature Max, Min post normalization: {np.max(Xn[:,0]):0.2f}, {np.min(Xn[:,0]):0.2f}")
print(f"Duration    Max, Min post normalization: {np.max(Xn[:,1]):0.2f}, {np.min(Xn[:,1]):0.2f}")
Xt = np.tile(Xn,(1000,1))
Yt= np.tile(Y,(1000,1))   
print(Xt.shape, Yt.shape)  
tf.random.set_seed(1234)  # applied to achieve consistent results
model = Sequential(
    [
        tf.keras.Input(shape=(2,)),
        Dense(3, activation='sigmoid', name = 'layer1'),
        Dense(1, activation='sigmoid', name = 'layer2')
     ]
)
model.summary()
L1_num_params = 2 * 3 + 3   # W1 parameters  + b1 parameters
L2_num_params = 3 * 1 + 1   # W2 parameters  + b2 parameters
print("L1 params = ", L1_num_params, ", L2 params = ", L2_num_params  )
W1, b1 = model.get_layer("layer1").get_weights()
W2, b2 = model.get_layer("layer2").get_weights()
print(f"W1{W1.shape}:\n", W1, f"\nb1{b1.shape}:", b1)
print(f"W2{W2.shape}:\n", W2, f"\nb2{b2.shape}:", b2)
model.compile(
    loss = tf.keras.losses.BinaryCrossentropy(),
    optimizer = tf.keras.optimizers.Adam(learning_rate=0.01),
)

model.fit(
    Xt,Yt,            
    epochs=10,
)
W1, b1 = model.get_layer("layer1").get_weights()
W2, b2 = model.get_layer("layer2").get_weights()
print("W1:\n", W1, "\nb1:", b1)
print("W2:\n", W2, "\nb2:", b2)
W1, b1 = model.get_layer("layer1").get_weights()
W2, b2 = model.get_layer("layer2").get_weights()
print("W1:\n", W1, "\nb1:", b1)
print("W2:\n", W2, "\nb2:", b2)
W1 = np.array([
    [-8.94,  0.29, 12.89],
    [-0.17, -7.34, 10.79]] )
b1 = np.array([-9.87, -9.28,  1.01])
W2 = np.array([
    [-31.38],
    [-27.86],
    [-32.79]])
b2 = np.array([15.54])
model.get_layer("layer1").set_weights([W1,b1])
model.get_layer("layer2").set_weights([W2,b2])
X_test = np.array([
    [200,13.9],  # postive example
    [200,17]])   # negative example
X_testn = norm_l(X_test)
predictions = model.predict(X_testn)
print("predictions = \n", predictions)
yhat = np.zeros_like(predictions)
for i in range(len(predictions)):
    if predictions[i] >= 0.5:
        yhat[i] = 1
    else:
        yhat[i] = 0
print(f"decisions = \n{yhat}")
plt_layer(X,Y.reshape(-1,),W1,b1,norm_l)
plt_output_unit(W2,b2)
netf= lambda x : model.predict(norm_l(x))
plt_network(X,Y,netf)


Yorumlar